

Source Apportionment Tools

Gary Norris

Office of Research and Development, U.S. EPA, Research Triangle Park, NC

Air Toxics Exposure Assessment Workshop

Receptor Model Development and Testing

- Chemical Mass Balance (CMB)
 - EPA CMB 8.2 beta version (Nov. 2002)
- Unmix
 - EPA Unmix 2.3
 - VOC Example from El Paso, TX
- Positive Matrix Factorization (PMF)/ Multilinear Engine (ME)
 - Baltimore Retirement Home Example

EPA Unmix 2.3

Execute (non-negativity) factor analysis

generates source profiles (& uncertainties) and source contributions from ambient data

mo explicit use of ambient data uncertainties

∠no free parameters

EPA Unmix 2.3 stand-alone version available

Unmix User-Interface

El Paso Unmix Results

Time series of source contributions

El Paso Unmix Results

Benzene Volume Percent

Source

Source Apportionment of PM Personal Exposure Data

ANALYSIS OF PARTICLE COMPOSITIONS MEASURED IN THE EPA 1998 BALTIMORE EXPOSURE PANEL STUDY

Philip K. Hopke and Ziad Ramadan

Department of Chemical Engineering, Clarkson University,

Potsdam, NY 13699-5705

Pentti Paatero
Department of Physics, University of Helsinki, Helsinki, Finland

Gary Norris, Matthew Landis, Ron Williams, and Charles Lewis
National Exposure Research Laboratory,
Research Triangle Park, NC 27711

EPA 1998 Baltimore PM Epidemiology - Exposure Study

PM personal exposure in a sensitive subpopulation

Monitoring period

- July 27 - Aug 22, 1998

Panel

- Elderly subjects with a mean age of 84
- 18 story retirement home facility near Baltimore, MD
- No smoking
- Subjects typically did not cook in their apartments
- Subjects spent 95 % of their time indoors

Integrated PM_{2.5} measurements (24 hours)

- Community, Outdoor, and Indoor
 - •Versatile Air Pollutant Sampler (VAPS, modified dichotomous sampler)
 - •Mass, XRF, OC/EC, H+, NH₄+, NO₃-
- Personal, Apartment, Indoor, Outdoor, Community PM_{2.5}
 - Personal Exposure Monitor (PEM) with a PM_{2.5} impactor
 - Mass, XRF

Sampling Issue 1

PEM sampler Soil and Trace Element Oxide (TEO) concentrations were higher than the VAPS concentrations.

Based on these results, VAPS and PEM data were analyzed separately.

Sampling Issue 2

The organic carbon mass concentration (OC*1.4) collected with a quartz filter was significantly higher than the collocated $PM_{2.5}$ mass concentration collected on a Teflon filter (VAPS).

OC*1.4 mass fraction of PM_{2.5}

Community: 34 %
Outdoor: 30 %
Indoor: 168 %

Sources & Infiltration

Contribution of PM_{2.5} sources to the Community, Outdoor, and Indoor Sampling Sites

Positive Matrix Factorization 3

- VAPS data
- Sources contribute to all sites
- Time series pattern the same for all sites
- Relative contribution different for each site

Sources & Infiltration

Source Profiles From 3-way analysis

Sources & Infiltration

Average Contributions

Infiltration of PM_{2.5} sources from outdoor to indoor

PM _{2.5}: 35 %
Nitrate: 1.4 %
Sulfate: 43%
OC: 68 %

MV Exhaust: 32 %

Sources of PM_{2.5} Contributing to Personal Exposure

- PEM data
- Multilinear Engine 2
 - External factors contribute to all four environments (outdoor, indoor, personal, apartment).
 - Internal factors only contribute to personal and apartment samples.
 - Penalty function used to reduce the importance of the internal factors in the fitting process.
 - Make sure that as much of the observed concentration as possible is explained by external factors.

External Factors

Contribution

Personal: 48.4 %

Apartment: 68.6 %

Personal: 12.2 %

Apartment: 12.3 %

Personal: 2.4 %

Apartment: 2.5 %

Internal Factors

Contribution

Personal: 0.6 %

Apartment: 0.2 %

Personal: 36.1 %

Apartment: 16.1 %

Personal: 0.4 %

Apartment: 0.2 %

Unidentified Outdoor PM Source?

Measured on personal and apartment samples but not by the stationary outdoor and indoor monitors.

- Need to evaluate the relationship between the time spent outdoors and in vehicles with the Outdoor PM contribution.
- Include activity data and PM species in the receptor model. This could help identify sources contributing to the Outdoor PM.

Time series of external factor 1:

Sulfate

Source Contributions of Internal Factor 1

Personal Exposure to Motor Vehicle Exhaust

Can we determine personal exposure to motor vehicle PM exhaust?

Problems

- •Pb is no longer a tracer for motor vehicle exhaust
- Large OC positive artifact on indoor and personal samples (EPA Panel Study Data)

Research Areas

- Add OC1 to the receptor model to estimate OC artifact
- Quantify EC on Teflon filters using transmittance
- Use time activity data in the receptor model